Properties

Label 177840dz
Number of curves $1$
Conductor $177840$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 177840dz1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 177840dz do not have complex multiplication.

Modular form 177840.2.a.dz

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{7} - 2 q^{11} - q^{13} + 7 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 177840dz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
177840.bp1 177840dz1 \([0, 0, 0, -678506943, 6802672688633]\) \(-2961686524287311350789156096/139506818115234375\) \(-1627207526496093750000\) \([]\) \(39075840\) \(3.5483\) \(\Gamma_0(N)\)-optimal