Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-7917653x+8571840282\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-7917653xz^2+8571840282z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-10261278963x+400081699378062\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2566, 70542)$ | $3.3432411929402736864571600757$ | $\infty$ |
$(6507/4, -6507/8)$ | $0$ | $2$ |
Integral points
\( \left(2566, 70542\right) \), \( \left(2566, -73108\right) \)
Invariants
Conductor: | $N$ | = | \( 17745 \) | = | $3 \cdot 5 \cdot 7 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $244169581646328975$ | = | $3^{3} \cdot 5^{2} \cdot 7^{8} \cdot 13^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{11372424889583066401}{50586128775} \) | = | $3^{-3} \cdot 5^{-2} \cdot 7^{-8} \cdot 13^{-1} \cdot 337^{3} \cdot 6673^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5417568405819412288319668107$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2592821618511728608052230899$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9865300814902173$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.057673049080138$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.3432411929402736864571600757$ |
|
Real period: | $\Omega$ | ≈ | $0.27546568338662707245891671076$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.6837928797584592967896151533 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.683792880 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.275466 \cdot 3.343241 \cdot 16}{2^2} \\ & \approx 3.683792880\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 516096 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 21840 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 18721 & 16 \\ 18728 & 129 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21825 & 16 \\ 21824 & 17 \end{array}\right),\left(\begin{array}{rr} 10072 & 21839 \\ 6641 & 21830 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 5468 & 5589 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 21742 & 21827 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 21836 & 21837 \end{array}\right),\left(\begin{array}{rr} 2738 & 16387 \\ 19135 & 10942 \end{array}\right),\left(\begin{array}{rr} 4381 & 16 \\ 12848 & 21525 \end{array}\right),\left(\begin{array}{rr} 14576 & 5 \\ 21795 & 21826 \end{array}\right)$.
The torsion field $K:=\Q(E[21840])$ is a degree-$155817722511360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/21840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 507 = 3 \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 5915 = 5 \cdot 7 \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 3549 = 3 \cdot 7 \cdot 13^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 105 = 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 17745.r
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 1365.a2, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{13}, \sqrt{15})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{13})\) | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.230604391120896.6 | \(\Z/8\Z\) | not in database |
$8$ | 8.8.370150560000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | nonsplit | nonsplit | nonsplit | ord | add | ord | ord | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 4 | 3 | 1 | 1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.