Show commands: SageMath
Rank
The elliptic curves in class 176400dj have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 176400dj do not have complex multiplication.Modular form 176400.2.a.dj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 176400dj
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 176400.ra2 | 176400dj1 | \([0, 0, 0, -15435, -3241350]\) | \(-189/2\) | \(-4303400887296000\) | \([]\) | \(774144\) | \(1.6820\) | \(\Gamma_0(N)\)-optimal |
| 176400.ra1 | 176400dj2 | \([0, 0, 0, -48172635, 128691319050]\) | \(-5745702166029/8192\) | \(-17626730034364416000\) | \([]\) | \(10063872\) | \(2.9644\) |