Properties

Label 176400.kh
Number of curves $2$
Conductor $176400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("kh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 176400.kh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 176400.kh do not have complex multiplication.

Modular form 176400.2.a.kh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 176400.kh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.kh1 176400ir1 \([0, 0, 0, -1120875, 457476250]\) \(-30642435/56\) \(-284616460800000000\) \([]\) \(1658880\) \(2.2407\) \(\Gamma_0(N)\)-optimal
176400.kh2 176400ir2 \([0, 0, 0, 1819125, 2234216250]\) \(179685/686\) \(-2541696149059200000000\) \([]\) \(4976640\) \(2.7900\)