Show commands: SageMath
Rank
The elliptic curves in class 1764.e have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
Each elliptic curve in class 1764.e has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 1764.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1764.e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
1764.e1 | 1764b4 | \([0, 0, 0, -6615, 203742]\) | \(54000\) | \(592815428352\) | \([2]\) | \(1728\) | \(1.0534\) | \(-12\) | |
1764.e2 | 1764b2 | \([0, 0, 0, -735, -7546]\) | \(54000\) | \(813189888\) | \([2]\) | \(576\) | \(0.50411\) | \(-12\) | |
1764.e3 | 1764b1 | \([0, 0, 0, 0, -343]\) | \(0\) | \(-50824368\) | \([2]\) | \(288\) | \(0.15754\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
1764.e4 | 1764b3 | \([0, 0, 0, 0, 9261]\) | \(0\) | \(-37050964272\) | \([2]\) | \(864\) | \(0.70685\) | \(-3\) |