Properties

Label 1760f
Number of curves $4$
Conductor $1760$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1760f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1760f do not have complex multiplication.

Modular form 1760.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{9} + q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1760f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1760.h3 1760f1 \([0, 0, 0, -37, 84]\) \(87528384/3025\) \(193600\) \([2, 2]\) \(128\) \(-0.21400\) \(\Gamma_0(N)\)-optimal
1760.h2 1760f2 \([0, 0, 0, -92, -224]\) \(21024576/6875\) \(28160000\) \([2]\) \(256\) \(0.13258\)  
1760.h1 1760f3 \([0, 0, 0, -587, 5474]\) \(43688592648/55\) \(28160\) \([2]\) \(256\) \(0.13258\)  
1760.h4 1760f4 \([0, 0, 0, 13, 294]\) \(474552/73205\) \(-37480960\) \([4]\) \(256\) \(0.13258\)