Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-33x-187\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-33xz^2-187z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2700x-128250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(316/25, 4961/125)$ | $6.0564385259122230423538407296$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 17600 \) | = | $2^{6} \cdot 5^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-11000000$ | = | $-1 \cdot 2^{6} \cdot 5^{6} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( -\frac{4096}{11} \) | = | $-1 \cdot 2^{12} \cdot 11^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.038563749161569590019601799269$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1127287973354532519893939281$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8254556483942886$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.4410920392390225$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.0564385259122230423538407296$ |
|
| Real period: | $\Omega$ | ≈ | $0.92263663960540312503972771337$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.5878920895243546870139640188 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.587892090 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.922637 \cdot 6.056439 \cdot 1}{1^2} \\ & \approx 5.587892090\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2240 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 6 | 6 | 0 |
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.1 | 25.60.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 38 & 41 \\ 191 & 539 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 1699 & 2150 \\ 1700 & 2149 \end{array}\right),\left(\begin{array}{rr} 1099 & 0 \\ 0 & 2199 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2151 & 50 \\ 2150 & 51 \end{array}\right),\left(\begin{array}{rr} 1649 & 0 \\ 0 & 2199 \end{array}\right),\left(\begin{array}{rr} 38 & 41 \\ 1841 & 1639 \end{array}\right),\left(\begin{array}{rr} 516 & 5 \\ 35 & 186 \end{array}\right),\left(\begin{array}{rr} 1884 & 1655 \\ 1823 & 1913 \end{array}\right)$.
The torsion field $K:=\Q(E[2200])$ is a degree-$5068800000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2200\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 275 = 5^{2} \cdot 11 \) |
| $5$ | additive | $14$ | \( 704 = 2^{6} \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5 and 25.
Its isogeny class 17600cd
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
The minimal quadratic twist of this elliptic curve is 11a3, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-10}) \) | \(\Z/5\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.30976000.2 | \(\Z/10\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $10$ | 10.0.21950349414400000.4 | \(\Z/25\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $16$ | deg 16 | \(\Z/15\Z\) | not in database |
| $20$ | 20.4.1505680748169532571648000000000000000.1 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | ord | split | ord | ord | ss | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | - | 1 | 2 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.