Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-18400x+132156\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-18400xz^2+132156z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-294400x+8458000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(440, 8787)$ | $0.23671227212996773613060036121$ | $\infty$ |
Integral points
\( \left(144, 684\right) \), \( \left(144, -685\right) \), \( \left(440, 8787\right) \), \( \left(440, -8788\right) \), \( \left(736, 19628\right) \), \( \left(736, -19629\right) \), \( \left(8040, 720812\right) \), \( \left(8040, -720813\right) \)
Invariants
Conductor: | $N$ | = | \( 17575 \) | = | $5^{2} \cdot 19 \cdot 37$ |
|
Discriminant: | $\Delta$ | = | $391143257453125$ | = | $5^{6} \cdot 19^{2} \cdot 37^{5} $ |
|
j-invariant: | $j$ | = | \( \frac{44091731607552}{25033168477} \) | = | $2^{27} \cdot 3^{3} \cdot 19^{-2} \cdot 23^{3} \cdot 37^{-5}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4899074219301570208593311193$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.68518846571310683355895145269$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.2082580176175668$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.2022654927609695$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.23671227212996773613060036121$ |
|
Real period: | $\Omega$ | ≈ | $0.45908848819694346514031226894$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 20 $ = $ 2\cdot2\cdot5 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.1734375829962072516698540528 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.173437583 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.459088 \cdot 0.236712 \cdot 20}{1^2} \\ & \approx 2.173437583\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 92160 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$37$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 74 = 2 \cdot 37 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 39 & 2 \\ 39 & 3 \end{array}\right),\left(\begin{array}{rr} 73 & 2 \\ 72 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 73 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[74])$ is a degree-$5466528$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/74\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 925 = 5^{2} \cdot 37 \) |
$5$ | additive | $14$ | \( 19 \) |
$19$ | split multiplicative | $20$ | \( 925 = 5^{2} \cdot 37 \) |
$37$ | split multiplicative | $38$ | \( 475 = 5^{2} \cdot 19 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 17575d consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 703a1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.148.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.810448.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ss | add | ord | ord | ord | ord | split | ss | ord | ord | split | ord | ord | ord |
$\lambda$-invariant(s) | 3,8 | 5,1 | - | 1 | 3 | 1 | 1 | 2 | 1,1 | 1 | 1 | 2 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.