Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2+2x-2\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z+2xz^2-2z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+2160x-54000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2, 2)$ | $0.13292599941667334079846165164$ | $\infty$ |
Integral points
\( \left(1, 0\right) \), \( \left(1, -1\right) \), \( \left(2, 2\right) \), \( \left(2, -3\right) \), \( \left(7, 17\right) \), \( \left(7, -18\right) \), \( \left(8, 21\right) \), \( \left(8, -22\right) \), \( \left(1507, 58482\right) \), \( \left(1507, -58483\right) \)
Invariants
| Conductor: | $N$ | = | \( 175 \) | = | $5^{2} \cdot 7$ |
|
| Discriminant: | $\Delta$ | = | $-875$ | = | $-1 \cdot 5^{3} \cdot 7 $ |
|
| j-invariant: | $j$ | = | \( \frac{4096}{7} \) | = | $2^{12} \cdot 7^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.75052616236553369536825785854$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1528856404740587890184476918$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9802957926219806$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.6749434783391606$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.13292599941667334079846165164$ |
|
| Real period: | $\Omega$ | ≈ | $2.6245205398760729437815646099$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $0.69773403150522814718676163630 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 0.697734032 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.624521 \cdot 0.132926 \cdot 2}{1^2} \\ & \approx 0.697734032\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 8 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $5$ | 5B.1.2 | 5.24.0.3 | $24$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 70.48.1-70.d.2.4, level \( 70 = 2 \cdot 5 \cdot 7 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 61 & 10 \\ 60 & 11 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 15 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 5 \\ 65 & 16 \end{array}\right),\left(\begin{array}{rr} 46 & 5 \\ 55 & 66 \end{array}\right)$.
The torsion field $K:=\Q(E[70])$ is a degree-$120960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/70\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $7$ | split multiplicative | $8$ | \( 25 = 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 175.a
consists of 2 curves linked by isogenies of
degree 5.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.140.1 | \(\Z/2\Z\) | not in database |
| $4$ | \(\Q(\zeta_{5})\) | \(\Z/5\Z\) | not in database |
| $5$ | 5.1.300125.1 | \(\Z/5\Z\) | not in database |
| $6$ | 6.0.686000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.82046671875.3 | \(\Z/3\Z\) | not in database |
| $12$ | 12.0.1200500000000.1 | \(\Z/10\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $15$ | 15.1.968890104070000000000.1 | \(\Z/10\Z\) | not in database |
| $20$ | 20.0.1014188554980499267578125.1 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | add | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 1,6 | 1 | - | 4 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.