Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3+x^2-665553x-209210193\) | (homogenize, simplify) | 
| \(y^2z=x^3+x^2z-665553xz^2-209210193z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-53909820x-152352501264\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-471, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-471, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 17472 \) | = | $2^{6} \cdot 3 \cdot 7 \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $30197292023808$ | = | $2^{14} \cdot 3^{10} \cdot 7^{4} \cdot 13 $ |  | 
| j-invariant: | $j$ | = | \( \frac{1989996724085074000}{1843096437} \) | = | $2^{4} \cdot 3^{-10} \cdot 5^{3} \cdot 7^{-4} \cdot 13^{-1} \cdot 99833^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8834798586535150287459475454$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0748081480002455010925100704$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0065907712954423$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.306801998782629$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.16714903094505105518110396448$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 40 $ = $ 2\cdot( 2 \cdot 5 )\cdot2\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $1.6714903094505105518110396448 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 1.671490309 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.167149 \cdot 1.000000 \cdot 40}{2^2} \\ & \approx 1.671490309\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 122880 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}^{*}$ | additive | -1 | 6 | 14 | 0 | 
| $3$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 | 
| $7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 53 & 4 \\ 106 & 9 \end{array}\right),\left(\begin{array}{rr} 134 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 153 & 4 \\ 152 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 118 \\ 116 & 39 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$10063872$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 13 \) | 
| $3$ | split multiplicative | $4$ | \( 5824 = 2^{6} \cdot 7 \cdot 13 \) | 
| $5$ | good | $2$ | \( 5824 = 2^{6} \cdot 7 \cdot 13 \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) | 
| $13$ | split multiplicative | $14$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 17472.ch
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2184.l1, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.7488.3 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.4.2846967791616.28 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.9475854336.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 | 
|---|---|---|---|---|---|
| Reduction type | add | split | ss | nonsplit | split | 
| $\lambda$-invariant(s) | - | 1 | 2,2 | 0 | 1 | 
| $\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
