sage:E = EllipticCurve("u1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 17280.u1 has
rank 1.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 7 |
1−4T+7T2 |
1.7.ae
|
| 11 |
1+3T+11T2 |
1.11.d
|
| 13 |
1+T+13T2 |
1.13.b
|
| 17 |
1−3T+17T2 |
1.17.ad
|
| 19 |
1+4T+19T2 |
1.19.e
|
| 23 |
1−3T+23T2 |
1.23.ad
|
| 29 |
1+3T+29T2 |
1.29.d
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 17280.u do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 17280.u
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 17280.u1 |
17280q1 |
[0,0,0,108,−1296] |
864/5 |
−806215680 |
[] |
5760 |
0.39095
|
Γ0(N)-optimal |