Properties

Label 17280.e
Number of curves 11
Conductor 1728017280
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 17280.e1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
551+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 1+T+13T2 1 + T + 13 T^{2} 1.13.b
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+3T+23T2 1 + 3 T + 23 T^{2} 1.23.d
2929 1+5T+29T2 1 + 5 T + 29 T^{2} 1.29.f
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17280.e do not have complex multiplication.

Modular form 17280.2.a.e

Copy content sage:E.q_eigenform(10)
 
qq55q11q133q17+O(q20)q - q^{5} - 5 q^{11} - q^{13} - 3 q^{17} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 17280.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17280.e1 17280m1 [0,0,0,46413,3885462][0, 0, 0, -46413, 3885462] 4388755356576/48828125-4388755356576/48828125 123018750000000-123018750000000 [][] 4435244352 1.51841.5184 Γ0(N)\Gamma_0(N)-optimal