sage:E = EllipticCurve([0, 0, 0, -3348, -77328])
gp:E = ellinit([0, 0, 0, -3348, -77328])
magma:E := EllipticCurve([0, 0, 0, -3348, -77328]);
oscar:E = elliptic_curve([0, 0, 0, -3348, -77328])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
trivial
magma:MordellWeilGroup(E);
Invariants
| Conductor: |
N |
= |
17280 | = | 27⋅33⋅5 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
| Discriminant: |
Δ |
= |
−181398528000 | = | −1⋅213⋅311⋅53 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
| j-invariant: |
j |
= |
−1252859936 | = | −1⋅25⋅3⋅5−3⋅313 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
| Endomorphism ring: |
End(E) | = | Z |
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) | = | SU(2) |
| Faltings height: |
hFaltings | ≈ | 0.92568133955726435503471078654 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
| Stable Faltings height: |
hstable | ≈ | −0.83228937066177694727959881222 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
| abc quality: |
Q | ≈ | 0.8629412241657862 |
|
| Szpiro ratio: |
σm | ≈ | 3.6931066692437162 |
|
| Analytic rank: |
ran | = | 0
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
| Mordell-Weil rank: |
r | = | 0
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
| Regulator: |
Reg(E/Q) | = | 1 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
| Real period: |
Ω | ≈ | 0.31301456606552759515810672354 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
| Tamagawa product: |
∏pcp | = | 4
= 22⋅1⋅1
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
| Torsion order: |
#E(Q)tor | = | 1 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
| Special value: |
L(E,1) | ≈ | 1.2520582642621103806324268942 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
| Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
1.252058264≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.313015⋅1.000000⋅4≈1.252058264
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 0, -3348, -77328]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 0, -3348, -77328]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
17280.2.a.c
q−q5−4q7+5q11−3q13+3q17+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[31, 2, 0, 1], [1, 0, 2, 1], [119, 2, 118, 3], [61, 2, 61, 3], [1, 2, 0, 1], [1, 1, 119, 0], [97, 2, 97, 3], [41, 2, 41, 3]]
GL(2,Integers(120)).subgroup(gens)
magma:Gens := [[31, 2, 0, 1], [1, 0, 2, 1], [119, 2, 118, 3], [61, 2, 61, 3], [1, 2, 0, 1], [1, 1, 119, 0], [97, 2, 97, 3], [41, 2, 41, 3]];
sub<GL(2,Integers(120))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 120=23⋅3⋅5, index 2, genus 0, and generators
(31021),(1201),(11911823),(616123),(1021),(111910),(979723),(414123).
The torsion field K:=Q(E[120]) is a degree-17694720 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/120Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
| ℓ |
Reduction type |
Serre weight |
Serre conductor |
| 2 |
additive |
4 |
135=33⋅5 |
| 3 |
additive |
4 |
128=27 |
| 5 |
nonsplit multiplicative |
6 |
3456=27⋅33 |
gp:ellisomat(E)
This curve has no rational isogenies. Its isogeny class 17280.c
consists of this curve only.
This elliptic curve is its own minimal quadratic twist.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
(which is trivial)
are as follows:
| [K:Q] |
K |
E(K)tors |
Base change curve |
| 3 |
3.1.1080.1 |
Z/2Z |
not in database
|
| 6 |
6.0.139968000.1 |
Z/2Z⊕Z/2Z |
not in database
|
| 8 |
8.2.743008370688.20 |
Z/3Z |
not in database
|
| 12 |
deg 12 |
Z/4Z |
not in database
|
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.