Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-179x-1119\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-179xz^2-1119z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-232011x-51512058\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(30, 129)$ | $2.6006271449794681939865509298$ | $\infty$ |
Integral points
\( \left(30, 129\right) \), \( \left(30, -159\right) \)
Invariants
Conductor: | $N$ | = | \( 17238 \) | = | $2 \cdot 3 \cdot 13^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-159417024$ | = | $-1 \cdot 2^{6} \cdot 3 \cdot 13^{2} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( -\frac{3754462153}{943296} \) | = | $-1 \cdot 2^{-6} \cdot 3^{-1} \cdot 13 \cdot 17^{-3} \cdot 661^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.29167886324566024396850485206$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.13581269633126254537374305487$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9003384877332229$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.8228649424595127$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6006271449794681939865509298$ |
|
Real period: | $\Omega$ | ≈ | $0.64408483082007396806646264265$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ ( 2 \cdot 3 )\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.050146968201156484753417945 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.050146968 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.644085 \cdot 2.600627 \cdot 6}{1^2} \\ & \approx 10.050146968\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 8640 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
$17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1326 = 2 \cdot 3 \cdot 13 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 1321 & 6 \\ 1320 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 513 & 2 \\ 826 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 547 & 6 \\ 315 & 19 \end{array}\right),\left(\begin{array}{rr} 224 & 1107 \\ 1 & 664 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1326])$ is a degree-$36954537984$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1326\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 8619 = 3 \cdot 13^{2} \cdot 17 \) |
$3$ | split multiplicative | $4$ | \( 169 = 13^{2} \) |
$13$ | additive | $38$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 17238.r
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.8619.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3788645211.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.21924480357.4 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.2897199279.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.75449468615091705288962033799917566103521922740224.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.2289412047701204710577481501950299908453.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ord | ord | ord | add | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 2 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 1 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.