Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-964779x+315757233\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-964779xz^2+315757233z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1250353611x+14735720523654\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(222, 10497)$ | $0.085970356468324268259080589629$ | $\infty$ |
$(1551/4, -1551/8)$ | $0$ | $2$ |
Integral points
\( \left(-1104, 6519\right) \), \( \left(-1104, -5415\right) \), \( \left(-402, 25473\right) \), \( \left(-402, -25071\right) \), \( \left(222, 10497\right) \), \( \left(222, -10719\right) \), \( \left(378, 2073\right) \), \( \left(378, -2451\right) \), \( \left(732, 1011\right) \), \( \left(732, -1743\right) \), \( \left(894, 12513\right) \), \( \left(894, -13407\right) \), \( \left(1038, 20289\right) \), \( \left(1038, -21327\right) \), \( \left(2262, 97401\right) \), \( \left(2262, -99663\right) \), \( \left(3486, 196545\right) \), \( \left(3486, -200031\right) \), \( \left(6206, 479969\right) \), \( \left(6206, -486175\right) \), \( \left(53058, 12192969\right) \), \( \left(53058, -12246027\right) \)
Invariants
Conductor: | $N$ | = | \( 17238 \) | = | $2 \cdot 3 \cdot 13^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $14379482208768049152$ | = | $2^{14} \cdot 3^{14} \cdot 13^{3} \cdot 17^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{45204035637810785581}{6545053349462016} \) | = | $2^{-14} \cdot 3^{-14} \cdot 17^{-4} \cdot 181^{3} \cdot 19681^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4012969768720654575253400578$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7600596375066812735119681974$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0409279893834102$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.428320194687742$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.085970356468324268259080589629$ |
|
Real period: | $\Omega$ | ≈ | $0.21347721678052135176693870854$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1568 $ = $ ( 2 \cdot 7 )\cdot( 2 \cdot 7 )\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.1942632703989650797652708357 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.194263270 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.213477 \cdot 0.085970 \cdot 1568}{2^2} \\ & \approx 7.194263270\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 451584 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$3$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$13$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$17$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 53 & 4 \\ 106 & 9 \end{array}\right),\left(\begin{array}{rr} 112 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 153 & 4 \\ 152 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 118 \\ 116 & 39 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$10063872$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 13 \) |
$3$ | split multiplicative | $4$ | \( 5746 = 2 \cdot 13^{2} \cdot 17 \) |
$7$ | good | $2$ | \( 2873 = 13^{2} \cdot 17 \) |
$13$ | additive | $50$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 17238.o
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.316368.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.100088711424.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.177935486976.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ord | ord | ord | add | split | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 6 | 1 | 5 | 1 | - | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.