Show commands: SageMath
Rank
The elliptic curves in class 17136z have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 17136z do not have complex multiplication.Modular form 17136.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 17136z
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
17136.h3 | 17136z1 | \([0, 0, 0, -2691, 52866]\) | \(721734273/13328\) | \(39797194752\) | \([2]\) | \(12288\) | \(0.82843\) | \(\Gamma_0(N)\)-optimal |
17136.h2 | 17136z2 | \([0, 0, 0, -5571, -80190]\) | \(6403769793/2775556\) | \(8287765807104\) | \([2, 2]\) | \(24576\) | \(1.1750\) | |
17136.h1 | 17136z3 | \([0, 0, 0, -76131, -8081694]\) | \(16342588257633/8185058\) | \(24440452227072\) | \([2]\) | \(49152\) | \(1.5216\) | |
17136.h4 | 17136z4 | \([0, 0, 0, 18909, -594270]\) | \(250404380127/196003234\) | \(-585262520672256\) | \([2]\) | \(49152\) | \(1.5216\) |