Properties

Label 17136z
Number of curves $4$
Conductor $17136$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17136z have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17136z do not have complex multiplication.

Modular form 17136.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{7} - 2 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 17136z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17136.h3 17136z1 \([0, 0, 0, -2691, 52866]\) \(721734273/13328\) \(39797194752\) \([2]\) \(12288\) \(0.82843\) \(\Gamma_0(N)\)-optimal
17136.h2 17136z2 \([0, 0, 0, -5571, -80190]\) \(6403769793/2775556\) \(8287765807104\) \([2, 2]\) \(24576\) \(1.1750\)  
17136.h1 17136z3 \([0, 0, 0, -76131, -8081694]\) \(16342588257633/8185058\) \(24440452227072\) \([2]\) \(49152\) \(1.5216\)  
17136.h4 17136z4 \([0, 0, 0, 18909, -594270]\) \(250404380127/196003234\) \(-585262520672256\) \([2]\) \(49152\) \(1.5216\)