Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+4533x-22790\)
|
(homogenize, simplify) |
\(y^2z=x^3+4533xz^2-22790z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+4533x-22790\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(23, 306)$ | $1.1547216247700157888691552999$ | $\infty$ |
$(6, 68)$ | $2.8088951624471737340459510549$ | $\infty$ |
$(5, 0)$ | $0$ | $2$ |
Integral points
\( \left(5, 0\right) \), \((6,\pm 68)\), \((23,\pm 306)\), \((54,\pm 616)\), \((167,\pm 2322)\), \((261,\pm 4352)\), \((455,\pm 9810)\), \((4613,\pm 313344)\)
Invariants
Conductor: | $N$ | = | \( 17136 \) | = | $2^{4} \cdot 3^{2} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-6185621127168$ | = | $-1 \cdot 2^{22} \cdot 3^{6} \cdot 7 \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{3449795831}{2071552} \) | = | $2^{-10} \cdot 7^{-1} \cdot 17^{-2} \cdot 1511^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1437141489868430754773702438$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.098739175907157079637484496119$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9468925092667463$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.782055578942966$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.1961394053043857391218493007$ |
|
Real period: | $\Omega$ | ≈ | $0.43934667552189193241579424173$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $5.6168528888999944316207007683 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.616852889 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.439347 \cdot 3.196139 \cdot 16}{2^2} \\ & \approx 5.616852889\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 46080 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{14}^{*}$ | additive | -1 | 4 | 22 | 10 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 56.12.0.n.1, level \( 56 = 2^{3} \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 29 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 9 & 50 \\ 48 & 7 \end{array}\right),\left(\begin{array}{rr} 34 & 1 \\ 39 & 0 \end{array}\right),\left(\begin{array}{rr} 53 & 4 \\ 52 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[56])$ is a degree-$258048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/56\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 63 = 3^{2} \cdot 7 \) |
$3$ | additive | $6$ | \( 1904 = 2^{4} \cdot 7 \cdot 17 \) |
$7$ | nonsplit multiplicative | $8$ | \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 17136.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 238.b2, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.16128.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.12745506816.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.203755297906944.27 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | nonsplit | ord | ord | split | ord | ss | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | - | - | 2 | 2 | 2 | 2 | 3 | 2 | 2,2 | 2 | 2 | 2 | 2 | 2,2 | 2 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.