Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 171.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
171.c1 | 171c2 | \([0, 0, 1, -39513, 3023145]\) | \(-9358714467168256/22284891\) | \(-16245685539\) | \([]\) | \(480\) | \(1.2007\) | |
171.c2 | 171c1 | \([0, 0, 1, 177, 1035]\) | \(841232384/1121931\) | \(-817887699\) | \([]\) | \(96\) | \(0.39599\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 171.c have rank \(0\).
Complex multiplication
The elliptic curves in class 171.c do not have complex multiplication.Modular form 171.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.