Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-2554x+49452\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-2554xz^2+49452z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3309363x+2317172238\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(13, 129)$ | $0$ | $6$ |
Integral points
\( \left(13, 129\right) \), \( \left(13, -143\right) \), \( \left(29, -15\right) \), \( \left(30, -7\right) \), \( \left(30, -24\right) \)
Invariants
| Conductor: | $N$ | = | \( 170 \) | = | $2 \cdot 5 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $31443200$ | = | $2^{8} \cdot 5^{2} \cdot 17^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{1841373668746009}{31443200} \) | = | $2^{-8} \cdot 5^{-2} \cdot 17^{-3} \cdot 19^{3} \cdot 6451^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.56817033270797834966743759840$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.56817033270797834966743759840$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9894109418057115$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.843977363582826$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $1.9117819745713617950029469038$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot2\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.63726065819045393166764896793 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.637260658 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.911782 \cdot 1.000000 \cdot 12}{6^2} \\ & \approx 0.637260658\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 160 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $17$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.22 |
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 21 & 4 \\ 1940 & 2021 \end{array}\right),\left(\begin{array}{rr} 2017 & 24 \\ 2016 & 25 \end{array}\right),\left(\begin{array}{rr} 7 & 24 \\ 492 & 1687 \end{array}\right),\left(\begin{array}{rr} 1021 & 24 \\ 1032 & 289 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 1958 & 971 \end{array}\right),\left(\begin{array}{rr} 1816 & 3 \\ 1581 & 1954 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 511 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 681 & 4 \\ 700 & 81 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2040])$ is a degree-$7219445760$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 17 \) |
| $3$ | good | $2$ | \( 10 = 2 \cdot 5 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 34 = 2 \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 10 = 2 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 170b
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | 4.0.272.1 | \(\Z/12\Z\) | not in database |
| $6$ | 6.0.270000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.21381376.2 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.4.241375690000.6 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $9$ | 9.3.6517143630000.1 | \(\Z/18\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $18$ | 18.6.208670640455065571309700000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 17 |
|---|---|---|---|---|
| Reduction type | nonsplit | ord | nonsplit | split |
| $\lambda$-invariant(s) | 1 | 4 | 0 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.