## Results (1-50 of 236 matches)

Label Class Conductor Rank Torsion CM Weierstrass equation
169650.a1 169650.a $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-120942x+16226716$$
169650.b1 169650.b $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/3\Z$ $$y^2+xy=x^3-x^2-297492x+67678416$$
169650.b2 169650.b $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+1823133x-53668459$$
169650.c1 169650.c $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-4612317x+3772107341$$
169650.c2 169650.c $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-49317x+153648341$$
169650.d1 169650.d $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+1312308x+4390125966$$
169650.e1 169650.e $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-80874342x+279959763316$$
169650.e2 169650.e $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-5058342x+4368603316$$
169650.e3 169650.e $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-2970342x+8003811316$$
169650.e4 169650.e $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-450342x+4827316$$
169650.f1 169650.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-87x-299$$
169650.g1 169650.g $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-94282812x+352391931216$$
169650.h1 169650.h $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-83742x+5680916$$
169650.i1 169650.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-26367x+675791$$
169650.j1 169650.j $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-11192067x-14423475659$$
169650.k1 169650.k $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+4308x-84784$$
169650.l1 169650.l $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+108633x+208799541$$
169650.m1 169650.m $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-94617x-8829959$$
169650.m2 169650.m $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+209133x-54088709$$
169650.n1 169650.n $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $2$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1467x+17941$$
169650.n2 169650.n $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $2$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+3033x+103441$$
169650.o1 169650.o $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-8780592492x+317964846238416$$
169650.p1 169650.p $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-93492x+33982416$$
169650.q1 169650.q $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-1683915567x+26844957863341$$
169650.q2 169650.q $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+5592548433x+139523041719341$$
169650.r1 169650.r $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-2567067x-1582444909$$
169650.r2 169650.r $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-22317x-3474659$$
169650.s1 169650.s $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-78867x-17791709$$
169650.s2 169650.s $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+680508x+379361416$$
169650.t1 169650.t $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-1012617x+424743291$$
169650.t2 169650.t $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+1773x-1879659$$
169650.u1 169650.u $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+933x-859$$
169650.v1 169650.v $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-362202867x+2653326935541$$
169650.w1 169650.w $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-7455942x+7737803316$$
169650.x1 169650.x $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-39042x+26020116$$
169650.y1 169650.y $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-4366617x-3503874259$$
169650.y2 169650.y $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/3\Z$ $$y^2+xy=x^3-x^2-247242x+43127316$$
169650.z1 169650.z $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-24492x-1468584$$
169650.ba1 169650.ba $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-868662x-203592204$$
169650.ba2 169650.ba $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-782262x-266059404$$
169650.bb1 169650.bb $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-25242x+51076916$$
169650.bc1 169650.bc $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-373992x+88125416$$
169650.bc2 169650.bc $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-22992x+1428416$$
169650.bd1 169650.bd $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-240125667x+1392854340491$$
169650.bd2 169650.bd $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-36219417x-53452690759$$
169650.bd3 169650.bd $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-32434917x-71077107259$$
169650.bd4 169650.bd $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+107134833x-371842480009$$
169650.be1 169650.be $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-42x-684$$
169650.bf1 169650.bf $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-117x-7709$$
169650.bg1 169650.bg $$2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-117492x+11823416$$