Learn more

Refine search


Results (1-50 of 236 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
169650.a1 169650.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -120942, 16226716]$ \(y^2+xy=x^3-x^2-120942x+16226716\)
169650.b1 169650.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -297492, 67678416]$ \(y^2+xy=x^3-x^2-297492x+67678416\)
169650.b2 169650.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1823133, -53668459]$ \(y^2+xy=x^3-x^2+1823133x-53668459\)
169650.c1 169650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4612317, 3772107341]$ \(y^2+xy=x^3-x^2-4612317x+3772107341\)
169650.c2 169650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -49317, 153648341]$ \(y^2+xy=x^3-x^2-49317x+153648341\)
169650.d1 169650.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1312308, 4390125966]$ \(y^2+xy=x^3-x^2+1312308x+4390125966\)
169650.e1 169650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -80874342, 279959763316]$ \(y^2+xy=x^3-x^2-80874342x+279959763316\)
169650.e2 169650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -5058342, 4368603316]$ \(y^2+xy=x^3-x^2-5058342x+4368603316\)
169650.e3 169650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2970342, 8003811316]$ \(y^2+xy=x^3-x^2-2970342x+8003811316\)
169650.e4 169650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -450342, 4827316]$ \(y^2+xy=x^3-x^2-450342x+4827316\)
169650.f1 169650.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $3.143690840$ $[1, -1, 0, -87, -299]$ \(y^2+xy=x^3-x^2-87x-299\)
169650.g1 169650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -94282812, 352391931216]$ \(y^2+xy=x^3-x^2-94282812x+352391931216\)
169650.h1 169650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -83742, 5680916]$ \(y^2+xy=x^3-x^2-83742x+5680916\)
169650.i1 169650.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.599604203$ $[1, -1, 0, -26367, 675791]$ \(y^2+xy=x^3-x^2-26367x+675791\)
169650.j1 169650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.682813653$ $[1, -1, 0, -11192067, -14423475659]$ \(y^2+xy=x^3-x^2-11192067x-14423475659\)
169650.k1 169650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $2.641360836$ $[1, -1, 0, 4308, -84784]$ \(y^2+xy=x^3-x^2+4308x-84784\)
169650.l1 169650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $4.191530649$ $[1, -1, 0, 108633, 208799541]$ \(y^2+xy=x^3-x^2+108633x+208799541\)
169650.m1 169650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.932258217$ $[1, -1, 0, -94617, -8829959]$ \(y^2+xy=x^3-x^2-94617x-8829959\)
169650.m2 169650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $3.864516435$ $[1, -1, 0, 209133, -54088709]$ \(y^2+xy=x^3-x^2+209133x-54088709\)
169650.n1 169650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $4.597796621$ $[1, -1, 0, -1467, 17941]$ \(y^2+xy=x^3-x^2-1467x+17941\)
169650.n2 169650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $1.149449155$ $[1, -1, 0, 3033, 103441]$ \(y^2+xy=x^3-x^2+3033x+103441\)
169650.o1 169650.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -8780592492, 317964846238416]$ \(y^2+xy=x^3-x^2-8780592492x+317964846238416\)
169650.p1 169650.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -93492, 33982416]$ \(y^2+xy=x^3-x^2-93492x+33982416\)
169650.q1 169650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $29.08786308$ $[1, -1, 0, -1683915567, 26844957863341]$ \(y^2+xy=x^3-x^2-1683915567x+26844957863341\)
169650.q2 169650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $87.26358926$ $[1, -1, 0, 5592548433, 139523041719341]$ \(y^2+xy=x^3-x^2+5592548433x+139523041719341\)
169650.r1 169650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2567067, -1582444909]$ \(y^2+xy=x^3-x^2-2567067x-1582444909\)
169650.r2 169650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -22317, -3474659]$ \(y^2+xy=x^3-x^2-22317x-3474659\)
169650.s1 169650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $10.90370251$ $[1, -1, 0, -78867, -17791709]$ \(y^2+xy=x^3-x^2-78867x-17791709\)
169650.s2 169650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $3.634567506$ $[1, -1, 0, 680508, 379361416]$ \(y^2+xy=x^3-x^2+680508x+379361416\)
169650.t1 169650.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1012617, 424743291]$ \(y^2+xy=x^3-x^2-1012617x+424743291\)
169650.t2 169650.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1773, -1879659]$ \(y^2+xy=x^3-x^2+1773x-1879659\)
169650.u1 169650.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $3.076376567$ $[1, -1, 0, 933, -859]$ \(y^2+xy=x^3-x^2+933x-859\)
169650.v1 169650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -362202867, 2653326935541]$ \(y^2+xy=x^3-x^2-362202867x+2653326935541\)
169650.w1 169650.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.809317599$ $[1, -1, 0, -7455942, 7737803316]$ \(y^2+xy=x^3-x^2-7455942x+7737803316\)
169650.x1 169650.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.525571051$ $[1, -1, 0, -39042, 26020116]$ \(y^2+xy=x^3-x^2-39042x+26020116\)
169650.y1 169650.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $8.218067165$ $[1, -1, 0, -4366617, -3503874259]$ \(y^2+xy=x^3-x^2-4366617x-3503874259\)
169650.y2 169650.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/3\Z$ $2.739355721$ $[1, -1, 0, -247242, 43127316]$ \(y^2+xy=x^3-x^2-247242x+43127316\)
169650.z1 169650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $5.947616593$ $[1, -1, 0, -24492, -1468584]$ \(y^2+xy=x^3-x^2-24492x-1468584\)
169650.ba1 169650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.652043062$ $[1, -1, 0, -868662, -203592204]$ \(y^2+xy=x^3-x^2-868662x-203592204\)
169650.ba2 169650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.304086124$ $[1, -1, 0, -782262, -266059404]$ \(y^2+xy=x^3-x^2-782262x-266059404\)
169650.bb1 169650.bb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $8.548623430$ $[1, -1, 0, -25242, 51076916]$ \(y^2+xy=x^3-x^2-25242x+51076916\)
169650.bc1 169650.bc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $4.271198325$ $[1, -1, 0, -373992, 88125416]$ \(y^2+xy=x^3-x^2-373992x+88125416\)
169650.bc2 169650.bc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.135599162$ $[1, -1, 0, -22992, 1428416]$ \(y^2+xy=x^3-x^2-22992x+1428416\)
169650.bd1 169650.bd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $7.457000896$ $[1, -1, 0, -240125667, 1392854340491]$ \(y^2+xy=x^3-x^2-240125667x+1392854340491\)
169650.bd2 169650.bd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.728500448$ $[1, -1, 0, -36219417, -53452690759]$ \(y^2+xy=x^3-x^2-36219417x-53452690759\)
169650.bd3 169650.bd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $7.457000896$ $[1, -1, 0, -32434917, -71077107259]$ \(y^2+xy=x^3-x^2-32434917x-71077107259\)
169650.bd4 169650.bd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $7.457000896$ $[1, -1, 0, 107134833, -371842480009]$ \(y^2+xy=x^3-x^2+107134833x-371842480009\)
169650.be1 169650.be \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $2.497692974$ $[1, -1, 0, -42, -684]$ \(y^2+xy=x^3-x^2-42x-684\)
169650.bf1 169650.bf \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.773774799$ $[1, -1, 0, -117, -7709]$ \(y^2+xy=x^3-x^2-117x-7709\)
169650.bg1 169650.bg \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.904127565$ $[1, -1, 0, -117492, 11823416]$ \(y^2+xy=x^3-x^2-117492x+11823416\)
Next   Download to