Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+55x+25\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+55xz^2+25z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+71253x+952614\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(10, 35)$ | $0.085968699591663171818269556682$ | $\infty$ |
Integral points
\( \left(0, 5\right) \), \( \left(0, -5\right) \), \( \left(2, 11\right) \), \( \left(2, -13\right) \), \( \left(10, 35\right) \), \( \left(10, -45\right) \), \( \left(30, 155\right) \), \( \left(30, -185\right) \), \( \left(70, 555\right) \), \( \left(70, -625\right) \)
Invariants
Conductor: | $N$ | = | \( 1690 \) | = | $2 \cdot 5 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-10816000$ | = | $-1 \cdot 2^{9} \cdot 5^{3} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{108750551}{64000} \) | = | $2^{-9} \cdot 5^{-3} \cdot 7^{3} \cdot 13 \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.039091663054450249823031589662$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.38839989652247253951921631727$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0015668035615748$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1798879917282052$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.085968699591663171818269556682$ |
|
Real period: | $\Omega$ | ≈ | $1.3834297641152917279642036336$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 27 $ = $ 3^{2}\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.2111547605296098682355589084 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.211154761 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.383430 \cdot 0.085969 \cdot 27}{1^2} \\ & \approx 3.211154761\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 432 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1555 & 6 \\ 1554 & 7 \end{array}\right),\left(\begin{array}{rr} 458 & 1107 \\ 1375 & 787 \end{array}\right),\left(\begin{array}{rr} 391 & 6 \\ 1173 & 19 \end{array}\right),\left(\begin{array}{rr} 781 & 6 \\ 783 & 19 \end{array}\right),\left(\begin{array}{rr} 123 & 2 \\ 1450 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 937 & 6 \\ 1251 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$57967902720$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 845 = 5 \cdot 13^{2} \) |
$3$ | good | $2$ | \( 169 = 13^{2} \) |
$5$ | split multiplicative | $6$ | \( 338 = 2 \cdot 13^{2} \) |
$13$ | additive | $38$ | \( 10 = 2 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 1690h
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.6760.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.270672597.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.16039857600.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.95293705330826203498965567665771484375.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.81225579321019289466143428608000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | split | ord | ord | add | ord | ord | ss | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 13 | 5 | 2 | 1 | 1 | - | 1 | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 1 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.