Properties

Label 169065.u
Number of curves $4$
Conductor $169065$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 169065.u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 169065.u do not have complex multiplication.

Modular form 169065.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} - 4 q^{7} - 3 q^{8} - q^{10} + q^{13} - 4 q^{14} - q^{16} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 169065.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
169065.u1 169065bb3 \([1, -1, 0, -40591260, 99549932575]\) \(420339554066191969/244298925\) \(4298754193774913925\) \([2]\) \(9437184\) \(2.9001\)  
169065.u2 169065bb2 \([1, -1, 0, -2551635, 1537034800]\) \(104413920565969/2472575625\) \(43508152307237450625\) \([2, 2]\) \(4718592\) \(2.5535\)  
169065.u3 169065bb1 \([1, -1, 0, -353790, -45853169]\) \(278317173889/109245825\) \(1922320977757680825\) \([2]\) \(2359296\) \(2.2069\) \(\Gamma_0(N)\)-optimal
169065.u4 169065bb4 \([1, -1, 0, 322470, 4802592901]\) \(210751100351/566398828125\) \(-9966516789836633203125\) \([2]\) \(9437184\) \(2.9001\)