Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-x^2-108158x-11105688\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-x^2z-108158xz^2-11105688z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-8760825x-8122329000\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-132, 924)$ | $3.7575407341236187413703545569$ | $\infty$ | 
| $(-118, 0)$ | $0$ | $2$ | 
| $(372, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-253, 0\right) \), \((-132,\pm 924)\), \( \left(-118, 0\right) \), \( \left(372, 0\right) \), \((4607,\pm 311850)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 16800 \) | = | $2^{5} \cdot 3 \cdot 5^{2} \cdot 7$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $27348890625000000$ | = | $2^{6} \cdot 3^{6} \cdot 5^{12} \cdot 7^{4} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{139927692143296}{27348890625} \) | = | $2^{6} \cdot 3^{-6} \cdot 5^{-6} \cdot 7^{-4} \cdot 12979^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8707064868442786527166721813$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.71941394034725581070767645396$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.035752418839084$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.767912199566353$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.7575407341236187413703545569$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.26684505449409830466076243356$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2^{2}\cdot2^{2} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $4.0107246478440447685624840075 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 4.010724648 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.266845 \cdot 3.757541 \cdot 64}{4^2} \\ & \approx 4.010724648\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 110592 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | -1 | 5 | 6 | 0 | 
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
| $5$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 | 
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2Cs | 4.12.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 41 & 4 \\ 82 & 9 \end{array}\right),\left(\begin{array}{rr} 61 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 4 \\ 62 & 9 \end{array}\right),\left(\begin{array}{rr} 117 & 4 \\ 116 & 5 \end{array}\right),\left(\begin{array}{rr} 69 & 118 \\ 74 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$737280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 25 = 5^{2} \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 5600 = 2^{5} \cdot 5^{2} \cdot 7 \) | 
| $5$ | additive | $18$ | \( 672 = 2^{5} \cdot 3 \cdot 7 \) | 
| $7$ | split multiplicative | $8$ | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 16800bj
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3360e1, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-6}, \sqrt{-10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.3317760000.5 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.22658678784000000.44 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | add | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 5 | - | 2 | 1 | 3 | 1 | 1,1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.