Properties

Label 167580.u
Number of curves $4$
Conductor $167580$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 167580.u have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 167580.u do not have complex multiplication.

Modular form 167580.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 167580.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
167580.u1 167580bn4 \([0, 0, 0, -16297743, -25315696042]\) \(21804712949838544/8680921875\) \(190599422956236000000\) \([2]\) \(9953280\) \(2.8553\)  
167580.u2 167580bn3 \([0, 0, 0, -1173648, -267169903]\) \(130287139815424/52926616125\) \(72628969003156818000\) \([2]\) \(4976640\) \(2.5087\)  
167580.u3 167580bn2 \([0, 0, 0, -580503, 127086302]\) \(985329269584/252434475\) \(5542483386219897600\) \([2]\) \(3317760\) \(2.3060\)  
167580.u4 167580bn1 \([0, 0, 0, -538608, 152131133]\) \(12592337649664/1315845\) \(1805678743795920\) \([2]\) \(1658880\) \(1.9594\) \(\Gamma_0(N)\)-optimal