Properties

Label 167310fo
Number of curves $1$
Conductor $167310$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 167310fo1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 167310fo do not have complex multiplication.

Modular form 167310.2.a.fo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} + q^{11} + q^{14} + q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 167310fo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
167310.o1 167310fo1 \([1, -1, 0, -730365, -235667899]\) \(2683525923/56320\) \(904275484650869760\) \([]\) \(2995200\) \(2.2352\) \(\Gamma_0(N)\)-optimal