Show commands: SageMath
Rank
The elliptic curves in class 167310eh have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 167310eh do not have complex multiplication.Modular form 167310.2.a.eh
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 167310eh
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
167310.q4 | 167310eh1 | \([1, -1, 0, -2661093720, -19347322483904]\) | \(592265697637387401314569/296787655248366796800\) | \(1044319710247009571679554764800\) | \([2]\) | \(227082240\) | \(4.4528\) | \(\Gamma_0(N)\)-optimal |
167310.q2 | 167310eh2 | \([1, -1, 0, -34558775640, -2470805389227200]\) | \(1297212465095901089487274249/1193746061037404160000\) | \(4200486504493691075635445760000\) | \([2, 2]\) | \(454164480\) | \(4.7994\) | |
167310.q3 | 167310eh3 | \([1, -1, 0, -26662230360, -3629921898478784]\) | \(-595697118196750093952139529/1272946549598037600000000\) | \(-4479172729484571862843413600000000\) | \([2]\) | \(908328960\) | \(5.1460\) | |
167310.q1 | 167310eh4 | \([1, -1, 0, -552818231640, -158205387923729600]\) | \(5309860874757074224246393258249/4502770931800627200\) | \(15844097123485613455886899200\) | \([2]\) | \(908328960\) | \(5.1460\) |