Properties

Label 167310.cq
Number of curves $4$
Conductor $167310$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 167310.cq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 167310.cq do not have complex multiplication.

Modular form 167310.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + 4 q^{7} - q^{8} - q^{10} - q^{11} - 4 q^{14} + q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 167310.cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
167310.cq1 167310fi3 \([1, -1, 0, -16326699, -25387799995]\) \(5066026756449723/11000000\) \(1045066897017000000\) \([2]\) \(11197440\) \(2.7044\)  
167310.cq2 167310fi4 \([1, -1, 0, -16144179, -25983289747]\) \(-4898016158612283/236328125000\) \(-22452609115599609375000\) \([2]\) \(22394880\) \(3.0509\)  
167310.cq3 167310fi1 \([1, -1, 0, -264939, -11052027]\) \(15781142246787/8722841600\) \(1136794239192268800\) \([2]\) \(3732480\) \(2.1551\) \(\Gamma_0(N)\)-optimal
167310.cq4 167310fi2 \([1, -1, 0, 1032981, -88148475]\) \(935355271080573/566899520000\) \(-73880524041255360000\) \([2]\) \(7464960\) \(2.5016\)