Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-222858x-40398539\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-222858xz^2-40398539z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3565731x-2589072226\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-276, 307)$ | $2.1082352970352897554981433175$ | $\infty$ |
| $(-1117/4, 1117/8)$ | $0$ | $2$ |
Integral points
\( \left(-276, 307\right) \), \( \left(-276, -31\right) \), \( \left(3260, 182411\right) \), \( \left(3260, -185671\right) \)
Invariants
| Conductor: | $N$ | = | \( 16731 \) | = | $3^{2} \cdot 11 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $1390984039929627$ | = | $3^{9} \cdot 11^{4} \cdot 13^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{347873904937}{395307} \) | = | $3^{-3} \cdot 11^{-4} \cdot 13^{3} \cdot 541^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8191487559481346154819202190$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.012632067116688598242446120245$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0091329432672695$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.992944276751005$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1082352970352897554981433175$ |
|
| Real period: | $\Omega$ | ≈ | $0.21974653620143569275195220410$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.7062192321688786485554021372 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.706219232 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.219747 \cdot 2.108235 \cdot 32}{2^2} \\ & \approx 3.706219232\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 110592 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 937 & 2912 \\ 52 & 1353 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3426 & 3427 \end{array}\right),\left(\begin{array}{rr} 791 & 0 \\ 0 & 3431 \end{array}\right),\left(\begin{array}{rr} 2456 & 1053 \\ 611 & 2638 \end{array}\right),\left(\begin{array}{rr} 3425 & 8 \\ 3424 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1288 & 2483 \\ 1027 & 2640 \end{array}\right),\left(\begin{array}{rr} 235 & 234 \\ 442 & 2419 \end{array}\right)$.
The torsion field $K:=\Q(E[3432])$ is a degree-$531372441600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
| $3$ | additive | $6$ | \( 1859 = 11 \cdot 13^{2} \) |
| $11$ | split multiplicative | $12$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
| $13$ | additive | $86$ | \( 99 = 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 16731.k
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 33.a1, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-13}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.1364523024384.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.8670998958336.28 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.19977981600006144.114 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.914519421387.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | ord | ord | split | add | ord | ss | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | 5 | - | 1 | 1 | 2 | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 |
| $\mu$-invariant(s) | 2 | - | 0 | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.