Properties

Label 16704bp
Number of curves $2$
Conductor $16704$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 16704bp have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16704bp do not have complex multiplication.

Modular form 16704.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{7} - 2 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 16704bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16704.bb2 16704bp1 \([0, 0, 0, 84, -176]\) \(37044/29\) \(-51314688\) \([2]\) \(3584\) \(0.16745\) \(\Gamma_0(N)\)-optimal
16704.bb1 16704bp2 \([0, 0, 0, -396, -1520]\) \(1940598/841\) \(2976251904\) \([2]\) \(7168\) \(0.51402\)