Properties

Label 166a
Number of curves 11
Conductor 166166
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 166a1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
83831+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 1+2T+19T2 1 + 2 T + 19 T^{2} 1.19.c
2323 14T+23T2 1 - 4 T + 23 T^{2} 1.23.ae
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 166a do not have complex multiplication.

Modular form 166.2.a.a

Copy content sage:E.q_eigenform(10)
 
qq2q3+q42q5+q6+q7q82q9+2q105q11q122q13q14+2q15+q163q17+2q182q19+O(q20)q - q^{2} - q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{7} - q^{8} - 2 q^{9} + 2 q^{10} - 5 q^{11} - q^{12} - 2 q^{13} - q^{14} + 2 q^{15} + q^{16} - 3 q^{17} + 2 q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 166a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
166.a1 166a1 [1,1,0,6,4][1, 1, 0, -6, 4] 30664297/1328-30664297/1328 1328-1328 [][] 88 0.63506-0.63506 Γ0(N)\Gamma_0(N)-optimal