Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3+33x+290\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3+33xz^2+290z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3+33x+290\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(1, 18)$ | $0.41294196647981202479987235081$ | $\infty$ | 
| $(-5, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-5, 0\right) \), \((-1,\pm 16)\), \((1,\pm 18)\), \((13,\pm 54)\), \((22,\pm 108)\), \((289,\pm 4914)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 1656 \) | = | $2^{3} \cdot 3^{2} \cdot 23$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-38631168$ | = | $-1 \cdot 2^{8} \cdot 3^{8} \cdot 23 $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{21296}{207} \) | = | $2^{4} \cdot 3^{-2} \cdot 11^{3} \cdot 23^{-1}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.13695806516819474055409325897$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.87444619953915697808835077380$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.8140908399397573$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3543402004340144$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.41294196647981202479987235081$ | 
     | 
| Real period: | $\Omega$ | ≈ | $1.5036932142476650523179765426$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2^{2}\cdot1 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $2.4837521314951204136787140913 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 2.483752131 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.503693 \cdot 0.412942 \cdot 16}{2^2} \\ & \approx 2.483752131\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 512 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{1}^{*}$ | additive | -1 | 3 | 8 | 0 | 
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 | 
| $23$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 276 = 2^{2} \cdot 3 \cdot 23 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 185 & 4 \\ 94 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 194 & 1 \\ 179 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 273 & 4 \\ 272 & 5 \end{array}\right),\left(\begin{array}{rr} 73 & 208 \\ 68 & 207 \end{array}\right)$.
The torsion field $K:=\Q(E[276])$ is a degree-$102592512$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/276\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 207 = 3^{2} \cdot 23 \) | 
| $3$ | additive | $8$ | \( 184 = 2^{3} \cdot 23 \) | 
| $23$ | nonsplit multiplicative | $24$ | \( 72 = 2^{3} \cdot 3^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 1656.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 552.d2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-23}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.2.3312.2 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.0.5802782976.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.191854512144.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.2.50762745474048.5 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ord | ss | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.