Properties

Label 165165l
Number of curves $4$
Conductor $165165$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 165165l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165165l do not have complex multiplication.

Modular form 165165.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} + q^{7} + 3 q^{8} + q^{9} - q^{10} - q^{12} - q^{13} - q^{14} + q^{15} - q^{16} + 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 165165l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165165.x3 165165l1 \([1, 0, 0, -17245, 870200]\) \(320153881321/6825\) \(12090903825\) \([2]\) \(245760\) \(1.0519\) \(\Gamma_0(N)\)-optimal
165165.x2 165165l2 \([1, 0, 0, -17850, 805707]\) \(355045312441/46580625\) \(82520418605625\) \([2, 2]\) \(491520\) \(1.3985\)  
165165.x4 165165l3 \([1, 0, 0, 27525, 4245132]\) \(1301812981559/5143122075\) \(-9111354486309075\) \([2]\) \(983040\) \(1.7451\)  
165165.x1 165165l4 \([1, 0, 0, -72905, -6758850]\) \(24190225473961/2879296875\) \(5100850051171875\) \([2]\) \(983040\) \(1.7451\)