Properties

Label 165165i
Number of curves $1$
Conductor $165165$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 165165i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165165i do not have complex multiplication.

Modular form 165165.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - q^{5} + 2 q^{6} + q^{7} + q^{9} + 2 q^{10} - 2 q^{12} - q^{13} - 2 q^{14} + q^{15} - 4 q^{16} - 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 165165i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165165.a1 165165i1 \([0, -1, 1, -106036, -13279608]\) \(-9005691727335424/19464046875\) \(-284973110296875\) \([]\) \(1161216\) \(1.6576\) \(\Gamma_0(N)\)-optimal