Properties

Label 165165ck
Number of curves $1$
Conductor $165165$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 165165ck1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165165ck do not have complex multiplication.

Modular form 165165.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} - q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{7} + q^{9} + 2 q^{10} - 2 q^{12} + q^{13} + 2 q^{14} - q^{15} - 4 q^{16} - 4 q^{17} + 2 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 165165ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165165.cj1 165165ck1 \([0, -1, 1, -187055590, 1219657244343]\) \(-543823202117389347300478976/168053731052330563610625\) \(-223679516030651980165741875\) \([]\) \(109105920\) \(3.7696\) \(\Gamma_0(N)\)-optimal