Properties

Label 165165.j
Number of curves $2$
Conductor $165165$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 165165.j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165165.j do not have complex multiplication.

Modular form 165165.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} - q^{7} + 3 q^{8} + q^{9} + q^{10} + q^{12} - q^{13} + q^{14} + q^{15} - q^{16} - 4 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 165165.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165165.j1 165165y2 \([1, 1, 1, -9226, -282952]\) \(65251267093979/12476953125\) \(16606824609375\) \([2]\) \(368640\) \(1.2541\)  
165165.j2 165165y1 \([1, 1, 1, 1169, -25156]\) \(132729045301/290233125\) \(-386300289375\) \([2]\) \(184320\) \(0.90752\) \(\Gamma_0(N)\)-optimal