Properties

Label 165165.h
Number of curves $1$
Conductor $165165$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 165165.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165165.h do not have complex multiplication.

Modular form 165165.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{7} + q^{9} - 2 q^{10} + 2 q^{12} + q^{13} - 2 q^{14} + q^{15} - 4 q^{16} - 4 q^{17} - 2 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 165165.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165165.h1 165165c1 \([0, 1, 1, -33040, 4121794]\) \(-2996945995083776/3809309765625\) \(-5070191298046875\) \([]\) \(1451520\) \(1.7067\) \(\Gamma_0(N)\)-optimal