Properties

Label 1650g
Number of curves $4$
Conductor $1650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1650g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1650g do not have complex multiplication.

Modular form 1650.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{11} + q^{12} - 2 q^{13} + 4 q^{14} + q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1650g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1650.e3 1650g1 \([1, 0, 1, -1006651, 367208198]\) \(7220044159551112609/448454983680000\) \(7007109120000000000\) \([2]\) \(53760\) \(2.3676\) \(\Gamma_0(N)\)-optimal
1650.e2 1650g2 \([1, 0, 1, -3054651, -1602967802]\) \(201738262891771037089/45727545600000000\) \(714492900000000000000\) \([2, 2]\) \(107520\) \(2.7142\)  
1650.e1 1650g3 \([1, 0, 1, -45822651, -119386039802]\) \(680995599504466943307169/52207031250000000\) \(815734863281250000000\) \([2]\) \(215040\) \(3.0608\)  
1650.e4 1650g4 \([1, 0, 1, 6945349, -9902967802]\) \(2371297246710590562911/4084000833203280000\) \(-63812513018801250000000\) \([2]\) \(215040\) \(3.0608\)