Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-22575x+1297125\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-22575xz^2+1297125z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-29257875x+60957528750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(110, 345)$ | $0.33323450726900264009808695863$ | $\infty$ |
Integral points
\( \left(14, 985\right) \), \( \left(14, -999\right) \), \( \left(85, -5\right) \), \( \left(85, -80\right) \), \( \left(110, 345\right) \), \( \left(110, -455\right) \)
Invariants
Conductor: | $N$ | = | \( 1650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-1069200000000$ | = | $-1 \cdot 2^{10} \cdot 3^{5} \cdot 5^{8} \cdot 11 $ |
|
j-invariant: | $j$ | = | \( -\frac{3257444411545}{2737152} \) | = | $-1 \cdot 2^{-10} \cdot 3^{-5} \cdot 5 \cdot 11^{-1} \cdot 8669^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2358903449675321744337870986$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.16293173667813192469994754312$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.984289652162716$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.627150748410303$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.33323450726900264009808695863$ |
|
Real period: | $\Omega$ | ≈ | $0.86718359040153743844715910559$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 2\cdot1\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.7338529787553256136644012524 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.733852979 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.867184 \cdot 0.333235 \cdot 6}{1^2} \\ & \approx 1.733852979\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 6000 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$3$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.1.4 | 5.24.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 651 & 10 \\ 650 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 215 & 656 \end{array}\right),\left(\begin{array}{rr} 329 & 650 \\ 0 & 593 \end{array}\right),\left(\begin{array}{rr} 606 & 5 \\ 595 & 656 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 605 & 541 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 325 & 656 \end{array}\right)$.
The torsion field $K:=\Q(E[660])$ is a degree-$608256000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/660\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
$3$ | nonsplit multiplicative | $4$ | \( 550 = 2 \cdot 5^{2} \cdot 11 \) |
$5$ | additive | $14$ | \( 11 \) |
$11$ | split multiplicative | $12$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 1650d
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 1650s1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/5\Z\) | not in database |
$3$ | 3.1.3300.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1437480000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.54450000.1 | \(\Z/10\Z\) | not in database |
$8$ | 8.2.25936092270000.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/15\Z\) | not in database |
$20$ | 20.0.213970103597138826735317707061767578125.4 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 1 | - | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.