Properties

Label 163800j
Number of curves $2$
Conductor $163800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 163800j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 163800j do not have complex multiplication.

Modular form 163800.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 4 q^{11} - q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 163800j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
163800.et2 163800j1 \([0, 0, 0, -37060995, 86840781550]\) \(60330571443221291348/417536301\) \(38961147318912000\) \([2]\) \(7225344\) \(2.7827\) \(\Gamma_0(N)\)-optimal
163800.et1 163800j2 \([0, 0, 0, -37084395, 86725630150]\) \(30222460127634675514/79352099523333\) \(14809006221442497792000\) \([2]\) \(14450688\) \(3.1293\)