Properties

Label 163800.dg
Number of curves $4$
Conductor $163800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 163800.dg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 163800.dg do not have complex multiplication.

Modular form 163800.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} - 4 q^{11} + q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 163800.dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
163800.dg1 163800w3 \([0, 0, 0, -5619675, 5127601750]\) \(841356017734178/1404585\) \(32766158880000000\) \([2]\) \(3932160\) \(2.4312\)  
163800.dg2 163800w4 \([0, 0, 0, -921675, -235084250]\) \(3711757787138/1124589375\) \(26234420940000000000\) \([2]\) \(3932160\) \(2.4312\)  
163800.dg3 163800w2 \([0, 0, 0, -354675, 78466750]\) \(423026849956/16769025\) \(195593907600000000\) \([2, 2]\) \(1966080\) \(2.0846\)  
163800.dg4 163800w1 \([0, 0, 0, 9825, 4473250]\) \(35969456/2985255\) \(-8705003580000000\) \([2]\) \(983040\) \(1.7381\) \(\Gamma_0(N)\)-optimal