Properties

Label 163170ei
Number of curves $2$
Conductor $163170$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ei1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 163170ei have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 163170ei do not have complex multiplication.

Modular form 163170.2.a.ei

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} - 3 q^{11} - 2 q^{13} + q^{16} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 163170ei

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
163170.i2 163170ei1 \([1, -1, 0, -36777645, -114531541979]\) \(-64144540676215729729/28962038218752000\) \(-2483961674276108500992000\) \([]\) \(23950080\) \(3.3877\) \(\Gamma_0(N)\)-optimal
163170.i1 163170ei2 \([1, -1, 0, -3247539885, -71231964122075]\) \(-44164307457093068844199489/1823508000000000\) \(-156395207772468000000000\) \([]\) \(71850240\) \(3.9370\)