Properties

Label 162624hb
Number of curves $1$
Conductor $162624$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 162624hb1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162624hb do not have complex multiplication.

Modular form 162624.2.a.hb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - q^{7} + q^{9} + 4 q^{13} + 3 q^{15} - 7 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 162624hb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162624.j1 162624hb1 \([0, -1, 0, -107367, -12120579]\) \(82458112/9261\) \(15373215310711104\) \([]\) \(1672704\) \(1.8388\) \(\Gamma_0(N)\)-optimal