Properties

Label 162624.jb
Number of curves $2$
Conductor $162624$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162624.jb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162624.jb do not have complex multiplication.

Modular form 162624.2.a.jb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{5} - q^{7} + q^{9} + 2 q^{13} + 4 q^{15} - 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162624.jb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162624.jb1 162624gv2 \([0, 1, 0, -16334903361, -651873675000033]\) \(779828911477214942771/154308452600236032\) \(95381424573123001767533507248128\) \([2]\) \(785055744\) \(4.8527\)  
162624.jb2 162624gv1 \([0, 1, 0, -15462619201, -740039796472033]\) \(661452718394879874611/36407410163712\) \(22504215342170673614419918848\) \([2]\) \(392527872\) \(4.5061\) \(\Gamma_0(N)\)-optimal