Properties

Label 162450ba
Number of curves $2$
Conductor $162450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162450ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162450ba do not have complex multiplication.

Modular form 162450.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{7} + q^{8} + 3 q^{11} + 6 q^{13} - 2 q^{14} + q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 162450ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162450.dk2 162450ba1 \([1, -1, 1, 15504160, 1395133827]\) \(480705753733655/279172334592\) \(-239365481167867648435200\) \([]\) \(20736000\) \(3.1755\) \(\Gamma_0(N)\)-optimal
162450.dk1 162450ba2 \([1, -1, 1, -1614389180, -24970409509053]\) \(-1389310279182025/267418692\) \(-89565537730220491289062500\) \([]\) \(103680000\) \(3.9802\)