Properties

Label 162288et
Number of curves $1$
Conductor $162288$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("et1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 162288et1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162288et do not have complex multiplication.

Modular form 162288.2.a.et

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + q^{13} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 162288et

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162288.r1 162288et1 \([0, 0, 0, -173019, 39329066]\) \(-3261064466/1917027\) \(-336723905827362816\) \([]\) \(1843200\) \(2.0657\) \(\Gamma_0(N)\)-optimal