Properties

Label 162288eg
Number of curves $2$
Conductor $162288$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162288eg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162288eg do not have complex multiplication.

Modular form 162288.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{11} + 2 q^{13} + 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 162288eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162288.fp2 162288eg1 \([0, 0, 0, -10584, -416745]\) \(3538944/23\) \(852172178256\) \([2]\) \(207360\) \(1.1253\) \(\Gamma_0(N)\)-optimal
162288.fp1 162288eg2 \([0, 0, 0, -17199, 166698]\) \(949104/529\) \(313599361598208\) \([2]\) \(414720\) \(1.4719\)