Properties

Label 162288cz
Number of curves $2$
Conductor $162288$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162288cz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162288cz do not have complex multiplication.

Modular form 162288.2.a.cz

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{5} - 2 q^{13} - 4 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 162288cz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162288.e2 162288cz1 \([0, 0, 0, -825552, 587286315]\) \(-1679412953088/3049579729\) \(-112989869583794442288\) \([2]\) \(5971968\) \(2.5379\) \(\Gamma_0(N)\)-optimal
162288.e1 162288cz2 \([0, 0, 0, -16708167, 26269474770]\) \(870143011569648/671898241\) \(398311643547370328832\) \([2]\) \(11943936\) \(2.8845\)