Properties

Label 162288.ek
Number of curves $1$
Conductor $162288$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ek1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 162288.ek1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162288.ek do not have complex multiplication.

Modular form 162288.2.a.ek

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 3 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 162288.ek

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162288.ek1 162288dx1 \([0, 0, 0, 73652733, -183848983038]\) \(13581780628779/12348030976\) \(-40172726758608531017957376\) \([]\) \(26191872\) \(3.6003\) \(\Gamma_0(N)\)-optimal