Properties

Label 162288.fc
Number of curves $4$
Conductor $162288$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162288.fc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162288.fc do not have complex multiplication.

Modular form 162288.2.a.fc

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 2 q^{13} + 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162288.fc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162288.fc1 162288ci4 \([0, 0, 0, -1742979, -885560830]\) \(1666957239793/301806\) \(106023853729898496\) \([2]\) \(2359296\) \(2.2704\)  
162288.fc2 162288ci3 \([0, 0, 0, -755139, 244330562]\) \(135559106353/5037138\) \(1769536664378155008\) \([2]\) \(2359296\) \(2.2704\)  
162288.fc3 162288ci2 \([0, 0, 0, -120099, -10828510]\) \(545338513/171396\) \(60211077426855936\) \([2, 2]\) \(1179648\) \(1.9238\)  
162288.fc4 162288ci1 \([0, 0, 0, 21021, -1147678]\) \(2924207/3312\) \(-1163499080712192\) \([2]\) \(589824\) \(1.5773\) \(\Gamma_0(N)\)-optimal