Properties

Label 162240.fl
Number of curves $4$
Conductor $162240$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162240.fl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162240.fl do not have complex multiplication.

Modular form 162240.2.a.fl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} - q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162240.fl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162240.fl1 162240gi4 \([0, 1, 0, -146241, -17555745]\) \(2186875592/428415\) \(67760205913620480\) \([2]\) \(1032192\) \(1.9463\)  
162240.fl2 162240gi2 \([0, 1, 0, -44841, 3393495]\) \(504358336/38025\) \(751777432473600\) \([2, 2]\) \(516096\) \(1.5997\)  
162240.fl3 162240gi1 \([0, 1, 0, -43996, 3537314]\) \(30488290624/195\) \(60238576320\) \([2]\) \(258048\) \(1.2531\) \(\Gamma_0(N)\)-optimal
162240.fl4 162240gi3 \([0, 1, 0, 43039, 15151839]\) \(55742968/658125\) \(-104092259880960000\) \([2]\) \(1032192\) \(1.9463\)